

Geometry

Chapter 6

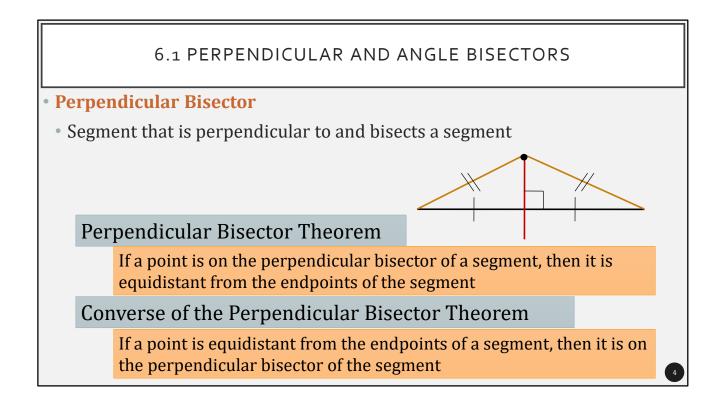
- This Slideshow was developed to accompany the textbook
 - Big Ideas Geometry
 - By Larson and Boswell
 - 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

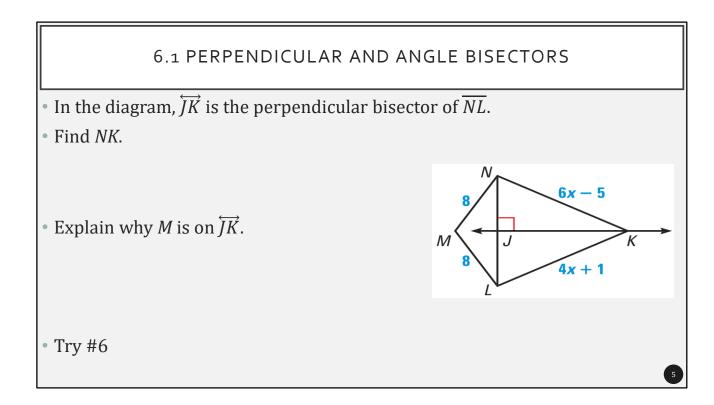
Slides created by Richard Wright, Andrews Academy <u>rwright@andrews.edu</u>

6.1 PERPENDICULAR AND ANGLE BISECTORS

After this lesson..

- I can identify a perpendicular bisector and an angle bisector.
- I can use theorems about bisectors to find measures in figures.
- I can write equations of perpendicular bisectors





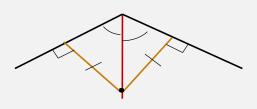
Since JK is \perp bisector, then NK = LK (\perp bisector theorem). $6x - 5 = 4x + 1 \rightarrow 2x - 5 = 1 \rightarrow 2x = 6 \rightarrow x = 3$ Find NK: $6x - 5 \rightarrow 6(3) - 5 = 13$

Since MN = ML, M is equidistant from each end of NL. Thus by then Converse of the Perpendicular Bisector Theorem, M is on the perpendicular bisector.

6.1 PERPENDICULAR AND ANGLE BISECTORS

Angle Bisector

• Ray that bisects an angle

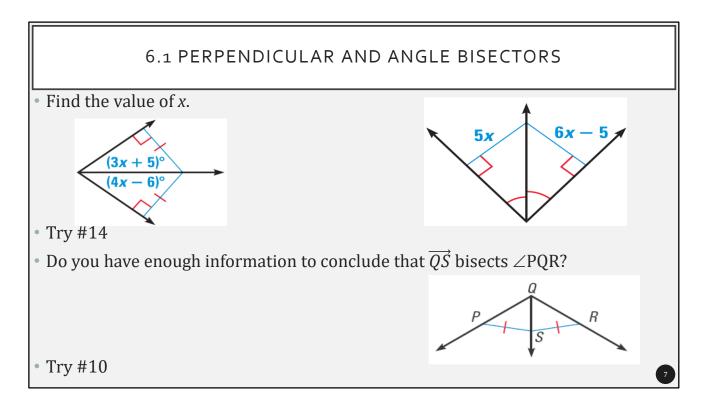


Angle Bisector Theorem

If a point is on the angle bisector, then it is equidistant from the sides of the angle

Converse of the Angle Bisector Theorem

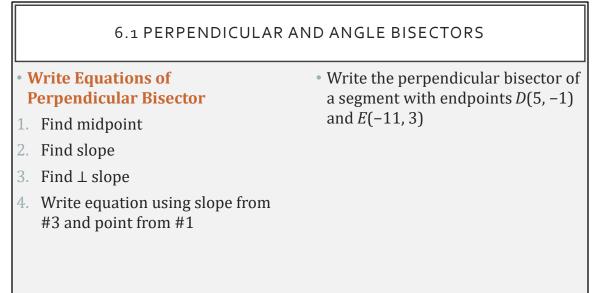
If a point is equidistant from the sides of an angle, then it is on the angle bisector



$$3x + 5 = 4x - 6 \rightarrow 5 = x - 6 \rightarrow x = 11$$

$$5x = 6x - 5 \rightarrow -x = -5 \rightarrow x = 5$$

No, you need to know that SP \perp QP and SR \perp QR



• Try #20

1. Midpoint:
$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \rightarrow \left(\frac{5 + (-11)}{2}, \frac{-1 + 3}{2}\right) \rightarrow (-3, 1)$$

2. Slope: $m = \frac{y_2 - y_1}{x_2 - x_1} \rightarrow \frac{3 - (-1)}{-11 - 5} = \frac{4}{-16} = -\frac{1}{4}$

$$x_2 - x_1 - 11 - 5 - 10$$

$$3. \pm 30 \mu e. m$$

$$y = mx + b$$

1 = 4(-3) + b
1 = -12 + b
13 = b
y = 4x + 13

After this lesson.

- I can find the circumcenter and incenter of a triangle.
- I can use points of concurrency to solve real-life problems

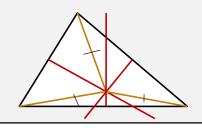
- Find the perpendicular bisectors of a triangle
- Cut out a triangle
- Fold each vertex to each other vertex
 - The three folds are the perpendicular bisectors
- What do you notice?
 - Perpendicular bisectors meet at one point
- Measure the distance from the meeting point to each vertex
- What do you notice?
 - The distances are equal

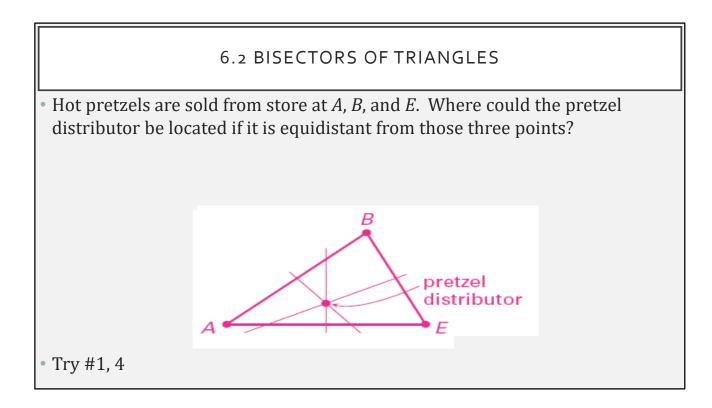
• Concurrent

• Several lines that intersect at same point (point of concurrency)

Concurrency of Perpendicular Bisectors of a Triangle

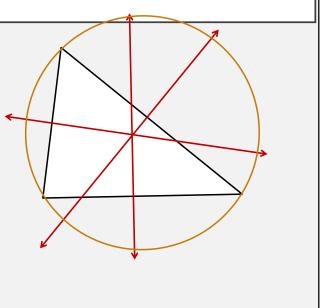
The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of a triangle

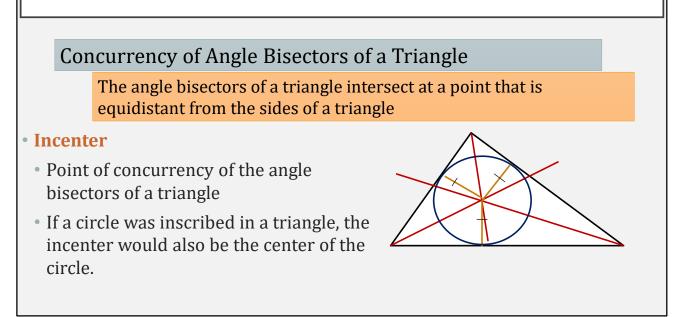


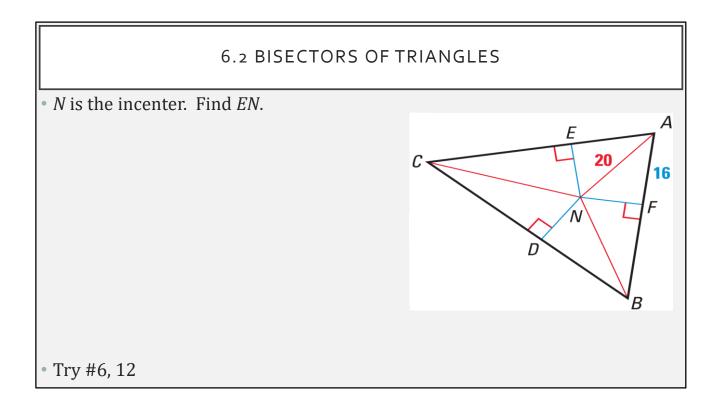


• Circumcenter

- The point of concurrency of the perpendicular bisectors of a triangle.
- If a circle was circumscribed around a triangle, the circumcenter would also be the center of the circle.







Find NF by using the Pythagorean theorem. $16^2 + NF^2 = 20^2 \rightarrow 256 + NF^2 = 400 \rightarrow NF^2 = 144 \rightarrow NF = 12$ Since N is the incenter, NF = EN = 12

6.3 MEDIANS AND ALTITUDES OF TRIANGLES

After this lesson...

- I can find the centroid of a triangle
- I can find the orthocenter of a triangle

16

6.3 MEDIANS AND ALTITUDES OF TRIANGLES

Median

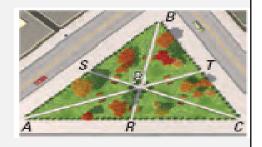
- Segment that connects a vertex to a midpoint of side of a triangle.
- Point of concurrency is called the centroid.
- The centroid is the balance point.

Concurrency of Medians of a Triangle

The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the midpoints of the opposite side.

6.3 MEDIANS AND ALTITUDES OF TRIANGLES

- Each path goes from the midpoint of one edge to the opposite corner. The paths meet at *P*.
- If *SC* = 2100 ft, find *PS* and *PC*.
- If *BT* = 1000 ft, find *TC* and *BC*.
- If *PT* = 800 ft, find *PA* and *TA*.

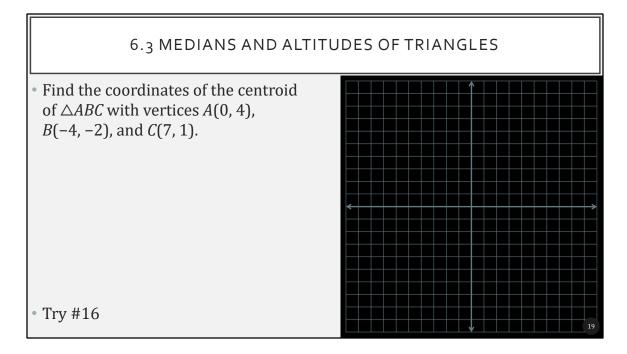


• Try #2, 6

$$PC = \frac{2}{3}SC \rightarrow PC = \frac{2}{3}(2100) = 1400 \text{ ft} \rightarrow PS = 700 \text{ ft}$$

T is midpoint of BC. TC = 1000 ft, BC = 2000 ft

$$PT = \frac{1}{3}TA \rightarrow 800 = \frac{1}{3}TA \rightarrow 2400 ft = TA, PA = 1600 ft$$



- 1. Graph the points
- 2. Find the midpoints of each side

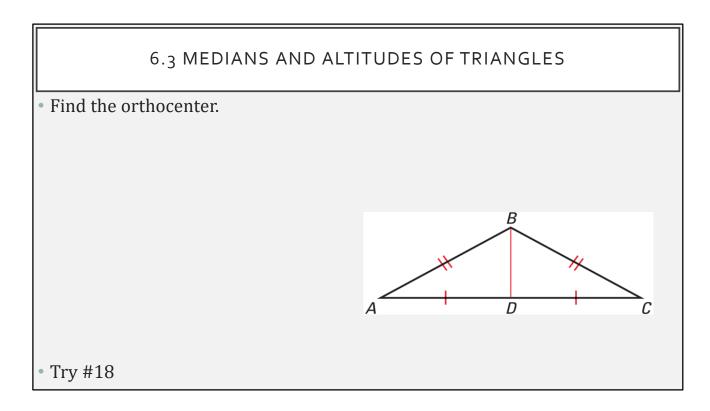
a.
$$M_{AB} = \left(\frac{0+(-4)}{2}, \frac{4+(-2)}{2}\right) = (-2, 1)$$

b. $M_{BC} = \left(\frac{-4+7}{2}, \frac{-2+1}{2}\right) = \left(\frac{3}{2}, -\frac{1}{2}\right)$
c. $M_{AC} = \left(\frac{0+7}{2}, \frac{4+1}{2}\right) = \left(\frac{7}{2}, \frac{5}{2}\right)$

- 3. Connect each midpoint with the opposite vertex
- 4. The centroid is the intersection
- (1, 1)

6.3 MEDIANS AND ALTITUDES OF TRIANGLES			
• Altitudes			
• Segment from a vertex and perpendicular to the opposite side of a triangle.			
Point of concurrency is called the orthocenter.			
Concurrency of Altitudes of a Triangle			
The lines containing the altitudes of a triangle are concurrent. • Acute $\Delta \rightarrow$ orthocenter inside triangle			
• Right $\Delta \rightarrow$ orthocenter on right angle of triangle			
• Obtuse $\Delta \rightarrow$ orthocenter outside of triangle			

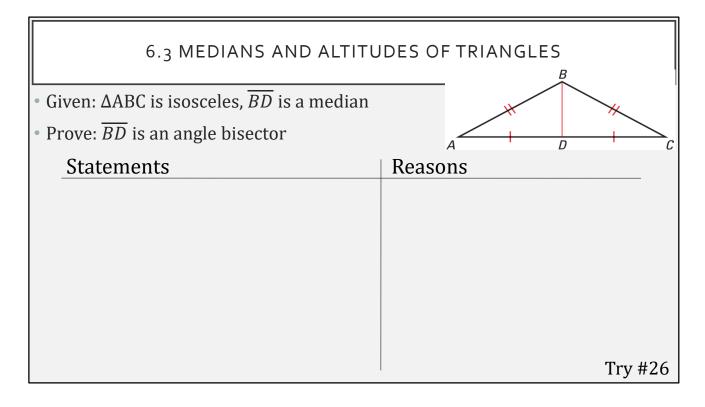
There is nothing terribly interesting about the orthocenter. In an acute triangle, the orthocenter is inside the triangle. In a right triangle, the orthocenter is on the triangle at the right angle. In an obtuse triangle, the orthocenter is outside of the triangle.



Draw the other two altitudes (from A and C). They will be outside the triangle

6.3 MEDIANS AND ALTITUDES OF TRIANGLES

In an isosceles triangle, the perpendicular bisector, angle bisector, median, and altitude from the vertex angle are all the same segment.



ΔABC is isosceles, BD is a me	edian (gi	ven)
$BA\congBC$	(de	ef. Isosceles)
$AD\congDC$	(de	ef. Median)
$BD\congBD$	(re	eflexive)
$\Delta ABD \cong \Delta CBD$	(SSS)	
$\angle ABD \cong \angle CBD$	$(def \cong \Delta)$ (CPCTC)	
BD is an angle bisector	(de	ef angle bisector)

6.4 THE TRIANGLE MIDSEGMENT THEOREM

After this lesson..

- I can use midsegments of triangles in the coordinate plane to solve problems
- I can solve real-life problems involving midsegments

24

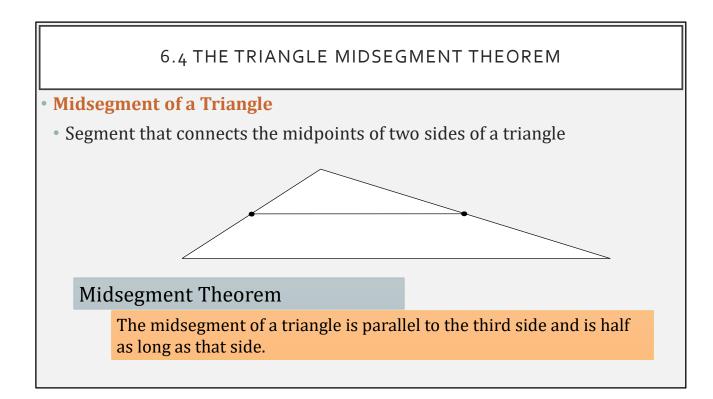
6.4 THE TRIANGLE MIDSEGMENT THEOREM

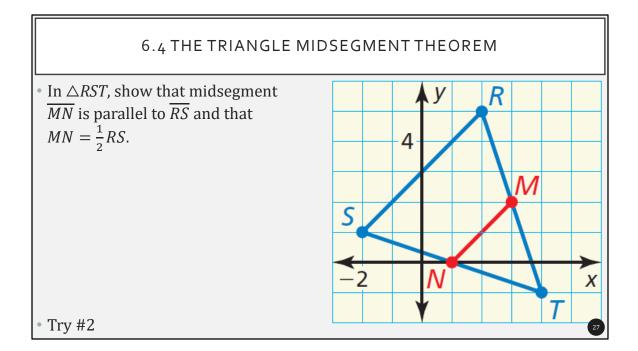
• Draw a triangle in your notes

• Find the midpoints of two of the sides using a ruler

- Connect the midpoints of the two sides with a segment
- Measure the segment and the third side
- What do you notice?
- What else do you notice about those two segments?

Length should be ½ They should be parallel



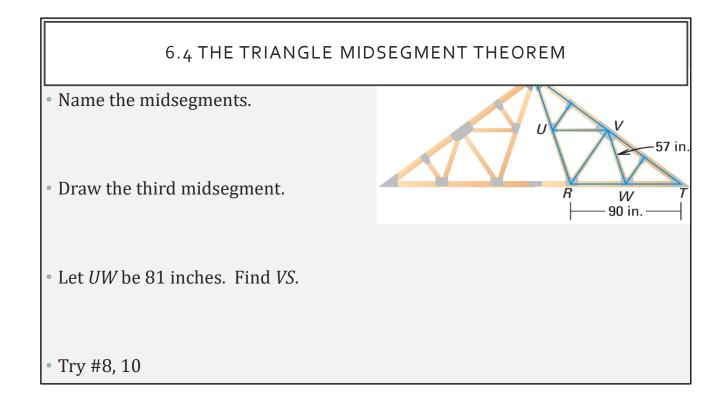


Parallel (slopes):

$$m_{MN} = \frac{2-0}{3-1} = 1$$
$$m_{RS} = \frac{5-1}{2-(-2)} = 1$$

Distance:

$$MN = \sqrt{(3-1)^2 + (2-0)^2} = 2\sqrt{2}$$
$$RS = \sqrt{(2-(-2))^2 + (5-1)^2} = 4\sqrt{2}$$



UV, WV

UW

UW = ½ ST VT = ½ ST UW = VT = 81

6.4 THE TRIANGLE MIDS		
 Given: CF = FB and CD = DA Prove: DF AB 		F
Statements	Reasons	В
		Try #6

CF = FB, CD = DA F is midpoint of CB, D is midpoint of AC DF is midsegment DF || AB (given) (def. Midpoint) (def. Midsegment) (Midsegment Theorem)

After this lesson...

- I can write indirect proofs.
- I can order the angles of a triangle given the side lengths
- I can order the side lengths of a triangle given the angle measures.
- I can determine possible side lengths of triangles

- Indirect Reasoning
 - You are taking a multiple choice test.
 - You don't know the correct answer.
 - You eliminate the answers you know are incorrect.
 - The answer that is left is the correct answer.
- You can use the same type of logic to prove geometric things.

• Indirect Proof

- Proving things by making an assumption and showing that the assumption leads to a contradiction.
- Essentially it is proof by eliminating all the other possibilities.

• Steps for writing indirect proofs

- Identify what you are trying to prove. Temporarily, assume the conclusion is false and that the opposite is true.
- Show that this leads to a contradiction of the hypothesis or some other fact.
- Point out that the assumption must be false, so the conclusion must be true.

Suppose you wanted to prove the statement "If x + y ≠ 14 and y = 5, then x ≠ 9." What temporary assumption could you make to prove the conclusion indirectly?

• Try #2

Assume x = 9

If x = 9, then x + y \neq 14. 9 + 5 \neq 14 \rightarrow 14 \neq 14. This is the contradiction

6.5 INDIRECT PROOF AND INEQUALITIES IN ONE TRIANGLE				
 Write an indirect proof that if two lines are <i>not</i> parallel, interior angles are <i>not</i> supplementary. Given Line ℓ is not parallel to line k. Prove ∠3 and ∠5 are not supplementary. 	then consecutive 3 l k			
• Try #8	35			

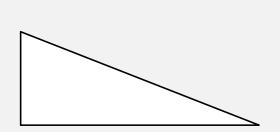
Assume temporarily that $\angle 3$ and $\angle 5$ are supplementary.

By the Converse of the Consecutive Interior Angles Theorem, line ℓ is parallel to line k.

This contradicts the given information.

So, the assumption that $\angle 3$ and $\angle 5$ are supplementary must be false, which proves that $\angle 3$ and $\angle 5$ are not supplementary.

- Draw a scalene triangle
- Measure the sides
- Measure the angles
- What do you notice?



- Smallest side opposite _____
- Largest angle opposite _____

Smallest angle Largest side

6.5 INDIRECT PROOF AND INEQUALITIES IN ONE TRIANGLE				
Big	Angle Opposite Big Side Theorem			
	If one side of a triangle is longer tha angle opposite the longer side is larg opposite the shorter side.			
Big	Side Opposite Big Angle Theorem			
	If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.			
-	the sides in order from shortest to longest.	<i>S</i> <i>121°</i> <i>30°</i> <i>T</i>		

ST, RS, RT

• Draw a triangle with sides 5 cm, 2 cm, and 2 cm.

• Draw a triangle with sides 5 cm, 2 cm, and 3 cm.

• Draw a triangle with sides 5 cm, 3 cm, and 3 cm.

Triangle Inequality Theorem

The sum of two sides of a triangle is greater than the length of the third side. AB + BC > AC; AB + AC > BC; BC + AC > AB

Can't be done, short side don't touch Can't be done, forms a line Can be done, isosceles triangle

• A triangle has one side of 11 inches and another of 15 inches. Describe the possible lengths of the third side.

• Try #20, 24

 $11 + x > 15 \rightarrow x > 4$ $15 + x > 11 \rightarrow x > -4 (already part of x > 4)$ $11 + 15 > x \rightarrow 26 > x$ Combine 1st and 3rd: 4 < x < 26

Short cut: subtract to get smallest, add to get largest

After this lesson.

- I can explain the Hinge Theorem
- I can compare measures in triangles.
- I can solve real-life problems using the Hinge Theorem.

40

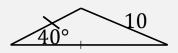
• See Mr. Wright's demonstration with the meter sticks.

• How does the third side compare when there is a small angle to a big angle?

Use two meter sticks to demonstrate the Hinge Theorem Have two meter sticks form two sides of the Δ and have the kids imagine the third side.

Hinge Theorem

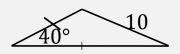
If 2 sides of one Δ are congruent to 2 sides of another Δ , and the included angle of the 1st Δ is larger than the included angle of the 2nd Δ , then the 3rd side of the 1st Δ is longer than the 3rd side of the 2nd Δ .



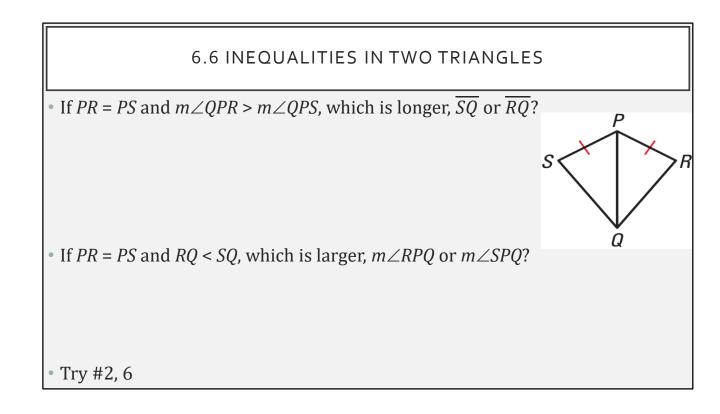
15

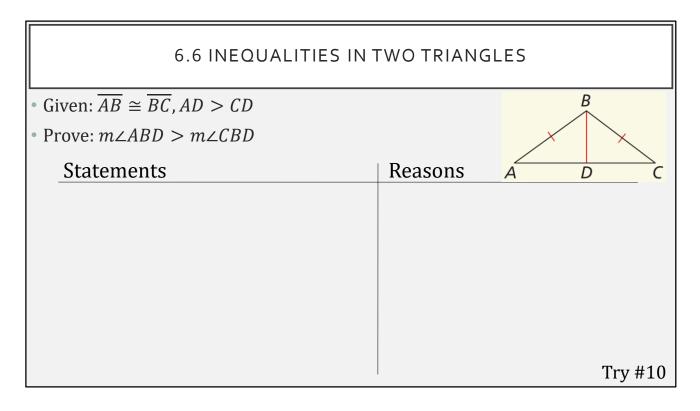
Converse of the Hinge Theorem

If 2 sides of one Δ are congruent to 2 sides of another Δ , and the 3rd side of the first is longer than the 3rd side of the 2nd Δ , then the included angle of the 1st Δ is larger than the included angle of the 2nd Δ .



15





 $\overline{AB} \cong \overline{BC}, AD > CD$ $\overline{BD} \cong \overline{BD}$ $m \angle ABD > m \angle CBD$

(given) (Reflexive) (Converse of Hinge Theorem)

• Two groups of joggers leave the same starting location heading in opposite directions. Each group travels 2 miles, then changes direction and travels 1 mile. Group A starts due north then turns 35° toward west. Group B starts due south then turns 25° toward east. Which group is farther from the start location? Explain your reasoning.

• Try #12

Group B; The measure of the included angle for Group B is 155°, which is greater than the measure of the included angle for Group A. So, Group B is farther from camp.